Michael Wehr

Associate Professor, Department of Psychology
Member, ION

Ph.D. California Institute of Technology
Sc.B. Brown University

LISB 213
LISB 203-206


Research Interests: How local circuits in the auditory cortex encode and transform sensory information

Overview: We study how local circuits in the cerebral cortex encode and transform sensory information. We use the rodent auditory cortex as a model system to investigate how cellular and network properties shape cortical responses to a continuous and temporally complex stream of sensory data. Research in my laboratory combines aspects of both cellular, systems, and computational neuroscience, by using the tools of molecular biology and cellular physiology to address systems-level questions. By using a variety of electrophysiological approaches, in particular in vivo whole cell recording methods in combination with molecular manipulations, we are trying to identify the cellular and synaptic mechanisms with which cortical circuits process auditory information, leading ultimately to our perceptual experiences of acoustic streams, such as music and speech.


Related Articles

Auditory Cortex Contributes to Discrimination of Pure Tones.

eNeuro. 2019 Sep/Oct;6(5):

Authors: O'Sullivan C, Weible AP, Wehr M

The auditory cortex is topographically organized for sound frequency and contains highly selective frequency-tuned neurons, yet the role of auditory cortex in the perception of sound frequency remains unclear. Lesion studies have shown that auditory cortex is not essential for frequency discrimination of pure tones. However, transient pharmacological inactivation has been reported to impair frequency discrimination. This suggests the possibility that successful tone discrimination after recovery from lesion surgery could arise from long-term reorganization or plasticity of compensatory pathways. Here, we compared the effects of lesions and optogenetic suppression of auditory cortex on frequency discrimination in mice. We found that transient bilateral optogenetic suppression partially but significantly impaired discrimination performance. In contrast, bilateral electrolytic lesions of auditory cortex had no effect on performance of the identical task, even when tested only 4 h after lesion. This suggests that when auditory cortex is destroyed, an alternative pathway is almost immediately adequate for mediating frequency discrimination. Yet this alternative pathway is insufficient for task performance when auditory cortex is intact but has its activity suppressed. These results indicate a fundamental difference between the effects of brain lesions and optogenetic suppression, and suggest the existence of a rapid compensatory process possibly induced by injury.

PMID: 31591138 [PubMed - in process]