Matt Smear

Assistant Professor, Department of Psychology
Member, ION

212a Huestis


Research Interests: Systems Neuroscience

Overview: Dr. Smear studies the neural mechanisms of olfactory function in mice. Mice have an excellent sense of smell – much of their genome encodes odorant receptors (over 1000 genes), and a large portion of their brain processes olfactory information. These neural features support a rich repertoire of olfactory behaviors. The Smear lab interrogates olfactory function with a battery of psychophysical tests, while manipulating and recording neuronal activity with genetics, electrophysiology, and imaging. From these studies, the lab will pursue general principles of how neural circuits generate behavior.


Related Articles

Movement-Related Signals in Sensory Areas: Roles in Natural Behavior.

Trends Neurosci. 2020 Jun 22;:

Authors: Parker PRL, Brown MA, Smear MC, Niell CM

Recent studies have demonstrated prominent and widespread movement-related signals in the brain of head-fixed mice, even in primary sensory areas. However, it is still unknown what role these signals play in sensory processing. Why are these sensory areas 'contaminated' by movement signals? During natural behavior, animals actively acquire sensory information as they move through the environment and use this information to guide ongoing actions. In this context, movement-related signals could allow sensory systems to predict self-induced sensory changes and extract additional information about the environment. In this review we summarize recent findings on the presence of movement-related signals in sensory areas and discuss how their study, in the context of natural freely moving behaviors, could advance models of sensory processing.

PMID: 32580899 [PubMed - as supplied by publisher]