Ian Greenhouse

Assistant Professor, Department of Human Physiology
Member, ION

Ph.D. University of California, San Diego
B.A Tufts University

img@uoregon.edu
Lab Website
Office: 348 Gerlinger
Phone: 485-205-5393

 

Research Interests: 

Overview: 

Ian Greenhouse’s research examines how humans initiate and cancel movement. His lab combines behavioral testing with electrophysiology, neuroimaging, and brain stimulation in healthy and clinical populations. His current research explores the relationship between the inhibitory neurochemical gamma-aminobutyric acid (GABA) and motor performance.

Dr. Greenhouse earned his BA in Psychology at Tufts University and his Ph.D. at the University of California, San Diego. He completed postdoctoral training at the University of California, Berkeley. He joined the Department of Human Physiology at the University of Oregon in the Fall of 2017.

RECENT PUBLICATIONS

Related Articles

The Neural Specificity of Movement Preparation During Actual and Imagined Movements.

Cereb Cortex. 2019 02 01;29(2):689-700

Authors: Lebon F, Ruffino C, Greenhouse I, Labruna L, Ivry RB, Papaxanthis C

Abstract
Current theories consider motor imagery, the mental representation of action, to have considerable functional overlap with the processes involved in actual movement preparation and execution. To test the neural specificity of motor imagery, we conducted a series of 3 experiments using transcranial magnetic stimulation (TMS). We compared changes in corticospinal excitability as people prepared and implemented actual or imagined movements, using a delayed response task in which a cue indicated the forthcoming response. TMS pulses, used to elicit motor-evoked responses in the first dorsal interosseous muscle of the right hand, were applied before and after an imperative signal, allowing us to probe the state of excitability during movement preparation and implementation. Similar to previous work, excitability increased in the agonist muscle during the implementation of an actual or imagined movement. Interestingly, preparing an imagined movement engaged similar inhibitory processes as that observed during actual movement, although the degree of inhibition was less selective in the imagery conditions. These changes in corticospinal excitability were specific to actual/imagined movement preparation, as no modulation was observed when preparing and generating images of cued visual objects. Taken together, inhibition is a signature of how actions are prepared, whether they are imagined or actually executed.

PMID: 29309536 [PubMed - indexed for MEDLINE]

Related Articles

A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task.

Elife. 2019 04 29;8:

Authors: Verbruggen F, Aron AR, Band GP, Beste C, Bissett PG, Brockett AT, Brown JW, Chamberlain SR, Chambers CD, Colonius H, Colzato LS, Corneil BD, Coxon JP, Dupuis A, Eagle DM, Garavan H, Greenhouse I, Heathcote A, Huster RJ, Jahfari S, Kenemans JL, Leunissen I, Li CR, Logan GD, Matzke D, Morein-Zamir S, Murthy A, Paré M, Poldrack RA, Ridderinkhof KR, Robbins TW, Roesch M, Rubia K, Schachar RJ, Schall JD, Stock AK, Swann NC, Thakkar KN, van der Molen MW, Vermeylen L, Vink M, Wessel JR, Whelan R, Zandbelt BB, Boehler CN

Abstract
Response inhibition is essential for navigating everyday life. Its derailment is considered integral to numerous neurological and psychiatric disorders, and more generally, to a wide range of behavioral and health problems. Response-inhibition efficiency furthermore correlates with treatment outcome in some of these conditions. The stop-signal task is an essential tool to determine how quickly response inhibition is implemented. Despite its apparent simplicity, there are many features (ranging from task design to data analysis) that vary across studies in ways that can easily compromise the validity of the obtained results. Our goal is to facilitate a more accurate use of the stop-signal task. To this end, we provide 12 easy-to-implement consensus recommendations and point out the problems that can arise when they are not followed. Furthermore, we provide user-friendly open-source resources intended to inform statistical-power considerations, facilitate the correct implementation of the task, and assist in proper data analysis.

PMID: 31033438 [PubMed - indexed for MEDLINE]

Related Articles

Planning face, hand, and leg movements: anatomical constraints on preparatory inhibition.

J Neurophysiol. 2019 05 01;121(5):1609-1620

Authors: Labruna L, Tischler C, Cazares C, Greenhouse I, Duque J, Lebon F, Ivry RB

Abstract
Motor-evoked potentials (MEPs), elicited by transcranial magnetic stimulation (TMS) over the motor cortex, are reduced during the preparatory period in delayed response tasks. In this study we examined how MEP suppression varies as a function of the anatomical organization of the motor cortex. MEPs were recorded from a left index muscle while participants prepared a hand or leg movement in experiment 1 or prepared an eye or mouth movement in experiment 2. In this manner, we assessed if the level of MEP suppression in a hand muscle varied as a function of the anatomical distance between the agonist for the forthcoming movement and the muscle targeted by TMS. MEP suppression was attenuated when the cued effector was anatomically distant from the hand (e.g., leg or facial movement compared with finger movement). A similar effect was observed in experiment 3 in which MEPs were recorded from a muscle in the leg and the forthcoming movement involved the upper limb or face. These results demonstrate an important constraint on preparatory inhibition: it is sufficiently broad to be manifest in a muscle that is not involved in the task, but it is not global, showing a marked attenuation when the agonist muscle belongs to a different segment of the body. NEW & NOTEWORTHY Using transcranial magnetic stimulation, we examined changes in corticospinal excitability as people prepared to move. Consistent with previous work, we observed a reduction in excitability during the preparatory period, an effect observed in both task-relevant and task-irrelevant muscles. However, this preparatory inhibition is anatomically constrained, attenuated in muscles belonging to a different body segment than the agonist of the forthcoming movement.

PMID: 30785815 [PubMed - indexed for MEDLINE]