Elinor Sullivan

Assistant Professor, Department of Human Physiology
Member, ION

Ph.D. Oregon Health and Science University
 

elinors@uoregon.edu
Lab Website
Office: 
Phone: 485-215-0227

 

Research Interests: 

Overview: 

Elinor Sullivan’s teaching focus is in the areas of nutrition, endocrinology, and neurobiology.

Dr. Sullivan’s research focuses on examining the influence of maternal metabolic state and dietary environment on offspring behavioral regulation, with an emphasis on behaviors that relate to mental health and behavioral disorders including autism spectrum disorders, attention deficit hyperactivity disorder, anxiety, and depression.

Her areas of expertise include behavioral neuroscience, with training and expertise in human and nonhuman primate behavior, brain development, developmental programming, maternal nutrition, and neurodevelopmental disorders.

Dr. Sullivan received her Ph.D. in Physiology from Oregon Health and Science University. She received her postdoctoral training at the University of California San Francisco and Oregon Health and Science University. Prior to coming to the University of Oregon, Dr. Sullivan was an Assistant Professor in the Biology Department at the University of Portland. Dr. Sullivan is currently an Assistant Professor in the Divisions of Neuroscience and Cardiometabolic health at the Oregon National Primate Research Center. She joined the UO Department of Human Physiology in 2017.

Dr. Sullivan has received research grants from the National Institute of Health, the Bill and Melinda Gates Foundation, the Murdock Charitable Trust, and the Obesity Society.

RECENT PUBLICATIONS

Related Articles

Maternal Interleukin-6 Is Associated With Macaque Offspring Amygdala Development and Behavior.

Cereb Cortex. 2019 Oct 26;:

Authors: Ramirez JSB, Graham AM, Thompson JR, Zhu JY, Sturgeon D, Bagley JL, Thomas E, Papadakis S, Bah M, Perrone A, Earl E, Miranda-Dominguez O, Feczko E, Fombonne EJ, Amaral DG, Nigg JT, Sullivan EL, Fair DA

Abstract
Human and animal cross-sectional studies have shown that maternal levels of the inflammatory cytokine interleukin-6 (IL-6) may compromise brain phenotypes assessed at single time points. However, how maternal IL-6 associates with the trajectory of brain development remains unclear. We investigated whether maternal IL-6 levels during pregnancy relate to offspring amygdala volume development and anxiety-like behavior in Japanese macaques. Magnetic resonance imaging (MRI) was administered to 39 Japanese macaque offspring (Female: 18), providing at least one or more time points at 4, 11, 21, and 36 months of age with a behavioral assessment at 11 months of age. Increased maternal third trimester plasma IL-6 levels were associated with offspring's smaller left amygdala volume at 4 months, but with more rapid amygdala growth from 4 to 36 months. Maternal IL-6 predicted offspring anxiety-like behavior at 11 months, which was mediated by reduced amygdala volumes in the model's intercept (i.e., 4 months). The results increase our understanding of the role of maternal inflammation in the development of neurobehavioral disorders by detailing the associations of a commonly examined inflammatory indicator, IL-6, on amygdala volume growth over time, and anxiety-like behavior.

PMID: 31665252 [PubMed - as supplied by publisher]

Related Articles

Increased Maternal Prenatal Adiposity, Inflammation, and Lower Omega-3 Fatty Acid Levels Influence Child Negative Affect.

Front Neurosci. 2019;13:1035

Authors: Gustafsson HC, Holton KF, Anderson AN, Nousen EK, Sullivan CA, Loftis JM, Nigg JT, Sullivan EL

Abstract
Objective: Increased maternal adiposity during pregnancy is associated with offspring risk for psychiatric disorders. Inflammation secondary to adiposity is believed to be an important mechanism through which this effect occurs. Although increased adiposity introduces risk, not all children of overweight mothers develop these problems. Gestational factors that modify this risk are not well-understood. If maternal increased adiposity exerts its effects on offspring outcomes by increasing inflammation in the gestational environment, then anti-inflammatory inputs such as omega-3 fatty acids may be one protective factor. The goal of this study was to investigate whether maternal pre-pregnancy body mass index (BMI) and omega-3 fatty acid levels independently and/or interactively predicted offspring infant negative affect, an early life marker of risk for psychopathology.
Methods: Data came from a prospective study of women recruited during pregnancy and their 6 month old infants (N = 62; 40% female). Maternal pre-pregnancy BMI was pulled from medical charts and third trimester omega-3 fatty acid concentrations were assessed in plasma. Child negative affect was assessed using observer- and maternal-ratings at 6 months of age. Maternal inflammation was indexed by third trimester plasma levels of interleukin-6, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1.
Results: Maternal pre-pregnancy BMI was associated with increased infant negative affect whereas eicosapentaenoic acid was associated with less infant negative affect. Maternal omega-3 fatty acid levels moderated the effect of BMI on infant negative affect, such that omega-3 fatty acids buffered children against the negative consequences of increased adiposity. Supporting the role of maternal inflammation in these associations, maternal BMI and omega-3 fatty acid levels interacted to predict maternal third trimester inflammation. Further, maternal inflammation was associated with increased infant negative affect.
Conclusion: Results suggest that omega-3 supplementation during pregnancy may protect against offspring behavioral risk associated with increased maternal adiposity.

PMID: 31632234 [PubMed]

Related Articles

Maternal High-Fat Diet Effects on Adaptations to Metabolic Challenges in Male and Female Juvenile Nonhuman Primates.

Obesity (Silver Spring). 2018 09;26(9):1430-1438

Authors: True C, Dean T, Takahashi D, Sullivan E, Kievit P

Abstract
OBJECTIVE: This study aimed to determine whether maternal high-fat diet (HFD) consumption in nonhuman primates alters the ability of offspring to adapt metabolically to nutrient and caloric challenges.
METHODS: Offspring from Japanese macaque dams fed either a control (CTR) diet or HFD were weaned onto a CTR diet creating two groups: maternal HFD (mHFD, n = 18) and maternal CTR (mCTR) diet (n = 12). Male and female offspring were exposed to a 5-day 30% calorie restriction and to a 35-day HFD challenge (HFDC), at 16 and 24 months of age, respectively. Caloric intake, body weight, and energy expenditure were measured.
RESULTS: Offspring from both groups showed similar body weight, food intake, and metabolic adaptations to a 5-day calorie restriction. mHFD offspring demonstrated increased food intake and early weight gain in response to a 35-day HFDC; however, group differences in weight dissipated during the challenge. Unlike mCTR animals, the mHFD group had a significant increase in fasting insulin after acute HFD exposure.
CONCLUSIONS: The current findings indicate that offspring exposed to an mHFD show metabolic adaptations to calorie restriction that are largely similar to those of offspring exposed to a mCTR diet but show delayed adaptation upon exposure to an acute HFDC.

PMID: 30226008 [PubMed - indexed for MEDLINE]

Related Articles

Delineating the Macroscale Areal Organization of the Macaque Cortex In Vivo.

Cell Rep. 2018 Apr 10;23(2):429-441

Authors: Xu T, Falchier A, Sullivan EL, Linn G, Ramirez JSB, Ross D, Feczko E, Opitz A, Bagley J, Sturgeon D, Earl E, Miranda-Domínguez O, Perrone A, Craddock RC, Schroeder CE, Colcombe S, Fair DA, Milham MP

Abstract
Complementing long-standing traditions centered on histology, fMRI approaches are rapidly maturing in delineating brain areal organization at the macroscale. The non-human primate (NHP) provides the opportunity to overcome critical barriers in translational research. Here, we establish the data requirements for achieving reproducible and internally valid parcellations in individuals. We demonstrate that functional boundaries serve as a functional fingerprint of the individual animals and can be achieved under anesthesia or awake conditions (rest, naturalistic viewing), though differences between awake and anesthetized states precluded the detection of individual differences across states. Comparison of awake and anesthetized states suggested a more nuanced picture of changes in connectivity for higher-order association areas, as well as visual and motor cortex. These results establish feasibility and data requirements for the generation of reproducible individual-specific parcellations in NHPs, provide insights into the impact of scan state, and motivate efforts toward harmonizing protocols.

PMID: 29642002 [PubMed - indexed for MEDLINE]