Dasa Zeithamova-Demircan

Assistant Professor, Department of Psychology
Member, ION

Ph.D. University of Texas at Austin
M.A. Charles University in Prague

325 LISB


Research Interests: Cognitive-Neuroscience, Memory

Overview: Memory allows us to use past experiences to navigate novel situations and inform future decisions. Because every event is unique, we need to use memory flexibly, drawing upon multiple relevant experiences to anticipate future judgments. Brain and Memory Lab studies how memories are formed and how they are linked to each other to create internal representations of the world that can guide our behavior. We investigate how different memory systems are implemented in the brain, how they represent information, and how they interact. In the quest for discovery, we rely on computer-based experiments, cognitive models of behavior, and advanced functional MRI methods.

My research focuses on how we build complex knowledge representations—such as schemas, cognitive maps or concepts—from simple learning experiences. Stacking memories as building blocks, we form knowledge that transcend direct experience, allowing us to use the memory for the past to guide behavior in the future. I am especially interested how the hippocampus—a brain structure critical for memory for individual events in our lives—interacts with the prefrontal cortex and other memory systems to support the flexible use of experience. My primary research tools include computer-based experiments, formal models of behavior, and advanced functional MRI methods.


Generalization and the hippocampus: More than one story?

Neurobiol Learn Mem. 2020 Sep 29;:107317

Authors: Zeithamova D, Bowman CR

Memory-based cognition depends on both the ability to remember specific details of individual experiences and the ability to combine information across experiences to generalize and derive new knowledge. A hippocampal role in rapid encoding of specific events is long established. More recent research also demonstrates hippocampal contributions to generalization, but their nature is still debated. The current review provides an overview of hippocampal-based generalization in two lines of research-episodic inference and categorization-and discusses evidence for four candidate mechanisms and representational schemes that may underpin such generalization. We highlight evidence showing that the hippocampus contributes specific memories to generalization decisions, but also form generalized representations that integrate information across experiences. Multiple views are currently plausible of how such generalized representations form and relate to specific memories. Future research that uses behavioral and neural indices of both generalization and specificity may help resolve between the candidate generalization mechanisms, with the possibility that more than one view of hippocampal-based generalization may be valid. Importantly, all views share the emphasis on the broader role of the hippocampus in cognition that goes beyond remembering the past.

PMID: 33007461 [PubMed - as supplied by publisher]