Dasa Zeithamova-Demircan

Assistant Professor, Department of Psychology
Member, ION

Ph.D. University of Texas at Austin
M.A. Charles University in Prague

Office:
325 LISB
541-346-6731

 

Research Interests: Cognitive-Neuroscience, Memory

Overview: Memory allows us to use past experiences to navigate novel situations and inform future decisions. Because every event is unique, we need to use memory flexibly, drawing upon multiple relevant experiences to anticipate future judgments. Brain and Memory Lab studies how memories are formed and how they are linked to each other to create internal representations of the world that can guide our behavior. We investigate how different memory systems are implemented in the brain, how they represent information, and how they interact. In the quest for discovery, we rely on computer-based experiments, cognitive models of behavior, and advanced functional MRI methods.

My research focuses on how we build complex knowledge representations—such as schemas, cognitive maps or concepts—from simple learning experiences. Stacking memories as building blocks, we form knowledge that transcend direct experience, allowing us to use the memory for the past to guide behavior in the future. I am especially interested how the hippocampus—a brain structure critical for memory for individual events in our lives—interacts with the prefrontal cortex and other memory systems to support the flexible use of experience. My primary research tools include computer-based experiments, formal models of behavior, and advanced functional MRI methods.

RECENT PUBLICATIONS

Related Articles

Perceived similarity ratings predict generalization success after traditional category learning and a new paired-associate learning task.

Psychon Bull Rev. 2020 May 29;:

Authors: Ashby SR, Bowman CR, Zeithamova D

Abstract
The current study investigated category learning across two experiments using face-blend stimuli that formed face families controlled for within- and between-category similarity. Experiment 1 was a traditional feedback-based category-learning task, with three family names serving as category labels. In Experiment 2, the shared family name was encountered in the context of a face-full name paired-associate learning task, with a unique first name for each face. A subsequent test that required participants to categorize new faces from each family showed successful generalization in both experiments. Furthermore, perceived similarity ratings for pairs of faces were collected before and after learning, prior to generalization test. In Experiment 1, similarity ratings increased for faces within a family and decreased for faces that were physically similar but belonged to different families. In Experiment 2, overall similarity ratings decreased after learning, driven primarily by decreases for physically similar faces from different families. The post-learning category bias in similarity ratings was predictive of subsequent generalization success in both experiments. The results indicate that individuals formed generalizable category knowledge prior to an explicit demand to generalize and did so both when attention was directed towards category-relevant features (Experiment 1) and when attention was directed towards individuating faces within a family (Experiment 2). The results tie together research on category learning and categorical perception and extend them beyond a traditional category-learning task.

PMID: 32472329 [PubMed - as supplied by publisher]