Judith Eisen

Professor, Department of Biology
Member, ION

Ph.D. Brandeis University
B.S. Utah State

Office:
315 Huestis
541-346-4524

 

Research Interests: Specification and patterning of neurons and neural crest cells in embryonic zebrafish

Overview: The vertebrate nervous system is composed of a large number of neurons with diverse characteristics. My lab is interested in how neuronal diversity is generated during development: how are the correct number of cells specified for specific neuronal fates at particular times and in particular locations? Most of our attention has been focused on a small, early-developing set of individually identified spinal motoneurons and on the neural crest, a transient embryonic cell population that generates a diverse set of derivatives, including the neurons and glia of the peripheral nervous system. We use a combined cellular, molecular and genetic approach to learn the mechanisms underlying cell fate specification. For example, we study the timing of critical events during development of motoneurons and neural crest cells by labeling individual cells and following their development in living embryos and by transplanting individual cells to new locations. We are isolating genes encoding molecules that may regulate motoneuron and neural crest development and testing the roles of the proteins encoded by these genes during motoneuron and neural crest specification and differentiation. We are also isolating mutations that alter motoneuron or neural crest cell fate with the goal of identifying new genes involved in the development of these cells.

RECENT PUBLICATIONS

Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

Development. 2018 Feb 23;145(4):

Authors: Troll JV, Hamilton MK, Abel ML, Ganz J, Bates JM, Stephens WZ, Melancon E, van der Vaart M, Meijer AH, Distel M, Eisen JS, Guillemin K

Abstract
Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer.

PMID: 29475973 [PubMed - in process]