Michael Posner

Professor Emeritus, Department of Psychology
Member, ION

Ph.D. University of Michigan
M.S. University of Washington
B.S. University of Washington

Lab Website
Office: 433 Straub
Phone: 541-346-4939


Research Interests: Cognitive-Neuroscience; Neural mechanisms and structures underlying selective attention

Overview: Michael Posner is Professor Emeritus at the University of Oregon and Adjunct Professor at the Weill Medical College in New York (Sackler Institute).

Dr. Posner's current work deals with genetic and experiential factors in the development of brain networks underlying attention and learning. We are currently examining how changes in white matter might contribute to improved performance.  In one study conducted together with the Niell lab we are imposing a theta rhythm on cells in the anterior cingulate of the mouse and examining whether the resultant activity leads to improved myelination in pathways near the cingulate.   We are also examining if epigenetic factors related to methylation might account for individual differences in this process.


Related Articles

Rehabilitating the brain through meditation and electrical stimulation.

Cortex. 2018 Aug 31;:

Authors: Posner MI

This paper is a review of our recent studies and ideas related to the neuropsychological issues that Robert Rafal and I worked together to understand attention and hopefully improve it in a variety of patients. Rehabilitation is also a goal of my current research to determine if non invasive stimuli can improve white matter in humans. We have found that fractional anisotropy (FA) is improved in pathways surrounding the anterior cingulate cortex (ACC) following two week to four weeks of meditation training. We hypothesized that the frontal theta increased following meditation training might be a cause of the improved connectivity. This was confirmed by a mouse study using optogenetics to impose theta rhythms in the ACC. We have evidence that electrical stimulation while performing a task that activates the ACC can also increase theta. We plan studies to determine whether two to four weeks of stimulation can improve FA in pathways surrounding the anterior cingulate.

PMID: 30245201 [PubMed - as supplied by publisher]