John Postlethwait

Professor, Department of Biology
Member, ION

Ph.D. Case Western Reserve
B.S. Stanford Univeristy

 

Research Interests: Genetic regulation of animal development including development of the nervous system, the mechanisms of sex determination, the origin of novel morphologies in evolution and the evolution of the vertebrate genome.

Overview: Our laboratory is interested in the genetic, genomic, and evolutionary principles that guide animal development. We investigate several aspects of this main problem: 

Genome Duplication: The evolution of gene functions in development after genome duplication, focusing on skeletal development.

Fanconi anemia: A small molecule screen for compounds to rescue zebrafish Fanconi Anemia mutants as a way to identify potential therapeutics for human FA patients and to understand disease mechanisms.

MicroRNAs: The roles of microRNAs in embryonic (especially skeletal) development, including evolving miRNA functions after genome duplication.

Icefish: The genetic basis for the evolution of osteopenia or osteoporosis in Antarctic icefish.

Sex determinaion:The developmental genetic basis for sex determination in zebrafish.

Speciation: The roles of genome duplication in lineage divergence, focusing on the evolution of cis and trans acting regulation in the radiation of the danio lineage, including zebrafish, and on variation among populations of stickleback.

Oikopleura: Retaining a chordate body plan as an adult, the larvacean urochordate Oikopleura dioica represents the sister lineage to the vertebrates, diverging before the R1 and R2 rounds of genome duplication that led to the origin of vertebrate innovations.

Perchlorate toxicity and sex determination: Perchlorate is a pervasive environmental contaminant that can cause partial sex reversal in stickleback. We are investigating the hypotheses that perchlorate alters sex development through the thyroid or a non-thyroidal mechanism.

Drosophila developmental genetics: Work on Drosophila homeotic mutants, pattern formation, and ovary development.

RECENT PUBLICATIONS

Related Articles

Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway.

FASEB J. 2017 Feb;31(2):569-583

Authors: Suarez-Bregua P, Torres-Nuñez E, Saxena A, Guerreiro P, Braasch I, Prober DA, Moran P, Cerda-Reverter JM, Du SJ, Adrio F, Power DM, Canario AV, Postlethwait JH, Bronner ME, Cañestro C, Rotllant J

Abstract
Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroid hormone (Pth)4 in zebrafish that was secondarily lost in the eutherian mammals' lineage, including humans, and that is specifically expressed in neurons of the hypothalamus and appears to be a central neural regulator of bone development and mineral homeostasis. Transgenic fish lines enabled mapping of axonal projections leading from the hypothalamus to the brainstem and spinal cord. Targeted laser ablation demonstrated an essential role for of pth4-expressing neurons in larval bone mineralization. Moreover, we show that Runx2 is a direct regulator of pth4 expression and that Pth4 can activate cAMP signaling mediated by Pth receptors. Finally, gain-of-function experiments show that Pth4 can alter calcium/phosphorus levels and affect expression of genes involved in phosphate homeostasis. Based on our discovery and characterization of Pth4, we propose a model for evolution of bone homeostasis in the context of the vertebrate transition from an aquatic to a terrestrial lifestyle.-Suarez-Bregua, P., Torres-Nuñez, E., Saxena, A., Guerreiro, P., Braasch, I., Prober, D. A., Moran, P., Cerda-Reverter, J. M., Du, S. J., Adrio, F., Power, D. M., Canario, A. V. M., Postlethwait, J. H., Bronner, M E., Cañestro, C., Rotllant, J. Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway.

PMID: 28148780 [PubMed - in process]

Related Articles

Characterization and Evolution of the Spotted Gar Retina.

J Exp Zool B Mol Dev Evol. 2016 Nov 9;:

Authors: Sukeena JM, Galicia CA, Wilson JD, McGinn T, Boughman JW, Robison BD, Postlethwait JH, Braasch I, Stenkamp DL, Fuerst PG

Abstract
In this study, we characterize the retina of the spotted gar, Lepisosteus oculatus, a ray-finned fish. Gar did not undergo the whole genome duplication event that occurred at the base of the teleost fish lineage, which includes the model species zebrafish and medaka. The divergence of gars from the teleost lineage and the availability of a high-quality genome sequence make it a uniquely useful species to understand how genome duplication sculpted features of the teleost visual system, including photoreceptor diversity. We developed reagents to characterize the cellular organization of the spotted gar retina, including representative markers for all major classes of retinal neurons and Müller glia. We report that the gar has a preponderance of predicted short-wavelength shifted (SWS) opsin genes, including a duplicated set of SWS1 (ultraviolet) sensitive opsin encoding genes, a SWS2 (blue) opsin encoding gene, and two rod opsin encoding genes, all of which were expressed in retinal photoreceptors. We also report that gar SWS1 cones lack the geometric organization of photoreceptors observed in teleost fish species, consistent with the crystalline photoreceptor mosaic being a teleost innovation. Of note the spotted gar expresses both exo-rhodopsin (RH1-1) and rhodopsin (RH1-2) in rods. Exo-rhodopsin is an opsin that is not expressed in the retina of zebrafish and other teleosts, but rather is expressed in regions of the brain. This study suggests that exo-rhodopsin is an ancestral actinopterygian (ray finned fish) retinal opsin, and in teleosts its expression has possibly been subfunctionalized to the pineal gland.

PMID: 27862951 [PubMed - as supplied by publisher]

Related Articles

Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni.

BMC Genomics. 2016 Nov 7;17(1):883

Authors: Böhne A, Wilson CA, Postlethwait JH, Salzburger W

Abstract
BACKGROUND: Sex chromosomes change more frequently in fish than in mammals or birds. However, certain chromosomes or genes are repeatedly used as sex determinants in different members of the teleostean lineage. East African cichlids are an enigmatic model system in evolutionary biology representing some of the most diverse extant vertebrate adaptive radiations. How sex is determined and if different sex-determining mechanisms contribute to speciation is unknown for almost all of the over 1,500 cichlid species of the Great Lakes. Here, we investigated the genetic basis of sex determination in a cichlid from Lake Tanganyika, Astatotilapia burtoni, a member of the most species-rich cichlid lineage, the haplochromines.
RESULTS: We used RAD-sequencing of crosses for two populations of A. burtoni, a lab strain and fish caught at the south of Lake Tanganyika. Using association mapping and comparative genomics, we confirmed male heterogamety in A. burtoni and identified different sex chromosomes (LG5 and LG18) in the two populations of the same species. LG5, the sex chromosome of the lab strain, is a fusion chromosome in A. burtoni. Wnt4 is located on this chromosome, representing the best candidate identified so far for the master sex-determining gene in our lab strain of A. burtoni.
CONCLUSIONS: Cichlids exemplify the high turnover rate of sex chromosomes in fish with two different chromosomes, LG5 and LG18, containing major sex-determining loci in the two populations of A. burtoni examined here. However, they also illustrate that particular chromosomes are more likely to be used as sex chromosomes. Chromosome 5 is such a chromosome, which has evolved several times as a sex chromosome, both in haplochromine cichlids from all Great Lakes and also in other teleost fishes.

PMID: 27821061 [PubMed - in process]

Related Articles

Exogenous iodide ameliorates perchlorate-induced thyroid phenotypes in threespine stickleback.

Gen Comp Endocrinol. 2016 Nov 1;:

Authors: Gardell AM, von Hippel FA, Adams EM, Dillon DM, Petersen AM, Postlethwait JH, Cresko WA, Loren Buck C

Abstract
Perchlorate is a ubiquitous environmental contaminant that has widespread endocrine disrupting effects in vertebrates, including threespine stickleback (Gasterosteus aculeatus). The target of perchlorate is thyroid tissue where it induces changes in the organization, activation, and morphology of thyroid follicles and surrounding tissues. To test the hypothesis that some phenotypes of perchlorate toxicity are not mediated by thyroid hormone, we chronically exposed stickleback beginning at fertilization to perchlorate (10, 30, 100 ppm) or control water with and without supplementation of either iodide or thyroxine (T4). Stickleback were sampled across a one-year timespan to identify potential differences in responses to treatment combinations before and after sexual maturation. We found that most thyroid histomorphological phenotypes induced by perchlorate (follicle proliferation, reduced follicle area (adults only), colloid depletion, thyrocyte hypertrophy (subadults only)) were significantly ameliorated by exogenous iodide supplementation. In contrast, treatment with exogenous T4 did not correct any of the thyroid-specific histopathologies induced by perchlorate. Whole-body thyroid hormone concentrations were not significantly affected by perchlorate exposure; however, supplementation with iodide and T4 significantly increased T4 concentrations. This study also revealed an increased erythrocyte area in the thyroid region of perchlorate-exposed adults, while lipid droplet number increased in perchlorate-exposed subadults. Increased erythrocyte area was ameliorated by both iodide and T4, while neither supplement was able to correct lipid droplet number. Our finding on lipid droplets indicates that exposure to perchlorate in early development may have obesogenic effects.

PMID: 27815158 [PubMed - as supplied by publisher]