John Postlethwait

Professor, Department of Biology
Member, ION

Ph.D. Case Western Reserve
B.S. Stanford Univeristy


Research Interests: Genetic regulation of animal development including development of the nervous system, the mechanisms of sex determination, the origin of novel morphologies in evolution and the evolution of the vertebrate genome.

Overview: Our laboratory is interested in the genetic, genomic, and evolutionary principles that guide animal development. We investigate several aspects of this main problem: 

Genome Duplication: The evolution of gene functions in development after genome duplication, focusing on skeletal development.

Fanconi anemia: A small molecule screen for compounds to rescue zebrafish Fanconi Anemia mutants as a way to identify potential therapeutics for human FA patients and to understand disease mechanisms.

MicroRNAs: The roles of microRNAs in embryonic (especially skeletal) development, including evolving miRNA functions after genome duplication.

Icefish: The genetic basis for the evolution of osteopenia or osteoporosis in Antarctic icefish.

Sex determinaion:The developmental genetic basis for sex determination in zebrafish.

Speciation: The roles of genome duplication in lineage divergence, focusing on the evolution of cis and trans acting regulation in the radiation of the danio lineage, including zebrafish, and on variation among populations of stickleback.

Oikopleura: Retaining a chordate body plan as an adult, the larvacean urochordate Oikopleura dioica represents the sister lineage to the vertebrates, diverging before the R1 and R2 rounds of genome duplication that led to the origin of vertebrate innovations.

Perchlorate toxicity and sex determination: Perchlorate is a pervasive environmental contaminant that can cause partial sex reversal in stickleback. We are investigating the hypotheses that perchlorate alters sex development through the thyroid or a non-thyroidal mechanism.

Drosophila developmental genetics: Work on Drosophila homeotic mutants, pattern formation, and ovary development.


Related Articles

Evolution of caudal fin ray development and caudal fin hypural diastema complex in spotted gar, teleosts, and other neopterygian fishes.

Dev Dyn. 2018 Mar 22;:

Authors: Desvignes T, Carey A, Postlethwait JH

BACKGROUND: The caudal fin of actinopterygians transitioned from a heterocercal dorsoventrally asymmetrical fin to a homocercal externally symmetrical fin in teleosts through poorly understood evolutionary developmental mechanisms. We studied the caudal skeleton of major living actinopterygian lineages, including polypteriformes, acipenseriformes, Holostei (gars and bowfin), and teleosts, compared to reports of extinct neopterygians and basal teleosteans. We focused on the hypural diastema complex, which includes 1) a gap between hypurals 2 and 3, that 2) separates two plates of connective tissue at 3) the branching of caudal vasculature; these features had been considered as a shared, derived trait of teleosts, a synapomorphy.
RESULTS: These studies revealed that gars and teleosts share all three features of the hypural diastema complex. Absence of a complex with these features from bowfin, fossil Holostei, and stem Teleostei argues in favor of repetitive, independent emergence in several neopterygian and basal Teleostei lineages, or less likely, many independent losses. We further observed that in gars and teleosts, the earliest developing lepidotrichia align with the horizontal adult body axis, thus participating in external symmetry.
CONCLUSIONS: These results suggest that the hypural diastema complex in teleosts and gars represents a homoplasy among neopterygians and that it emerged repeatedly by parallel evolution due to shared inherited underlying genetic and developmental programs (latent homology). Because the hypural diastema complex exists in gars with heterocercal tails, this complex is independent of homocercality. This article is protected by copyright. All rights reserved.

PMID: 29569346 [PubMed - as supplied by publisher]